32 bit single precision IEEE 754 binary floating point number 1 - 1001 0111 (2023)

Table of Contents
Convert 32 bit single precision IEEE 754 floating point standard binary numbers to base ten decimal system (float) 32 bit single precision IEEE 754 binary floating point 1 - 1001 0111 - 111 1011 1011 1000 0011 1110 to decimal system (base ten) = ? 1. Identify the elements that make up the binary representation of the number: 2. Convert the exponent from binary (base 2) to decimal (base 10): 3. Adjust the exponent. 4. Convert the mantissa from binary (base 2) to decimal (base 10): 5. Put all the numbers into expression to calculate the single precision floating point decimal value: 1 - 1001 0111 - 111 1011 1011 1000 0011 1110 converted from 32 bit single precision IEEE 754 binary floating point to base ten decimal system (float) = -32 993 404(10) More operations of this kind: Number 1 - 1001 0111 - 111 1011 1011 1000 0011 1101 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? Number 1 - 1001 0111 - 111 1011 1011 1000 0011 1111 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? Convert 32 bit single precision IEEE 754 floating point standard binary numbers to base ten decimal system (float) Latest 32 bit single precision IEEE 754 floating point binary standard numbers converted to decimal base ten (float) How to convert numbers from 32 bit single precision IEEE 754 binary floating point standard to decimal system in base 10 Follow the steps below to convert a number from 32 bit single precision IEEE 754 binary floating point representation to base 10 decimal system: Example: convert the number 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 from 32 bit single precision IEEE 754 binary floating point system to base 10 decimal system (float): References

Convert 32 bit single precision IEEE 754 floating point standard binary numbers to base ten decimal system (float)

32 bit single precision IEEE 754 binary floating point 1 - 1001 0111 - 111 1011 1011 1000 0011 1110 to decimal system (base ten) = ?

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,

1 = negative, 0 = positive.
1

The next 8 bits contain the exponent:
1001 0111

The last 23 bits contain the mantissa:
111 1011 1011 1000 0011 1110


2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

1001 0111(2) =

1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =

128 + 0 + 0 + 16 + 0 + 4 + 2 + 1 =

128 + 16 + 4 + 2 + 1 =

151(10)

3. Adjust the exponent.

Subtract the excess bits: 2(8 - 1) - 1 = 127,

that is due to the 8 bit excess/bias notation.

Exponent adjusted = 151 - 127 = 24


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited).


111 1011 1011 1000 0011 1110(2) =

1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 =

0.5 + 0.25 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0 + 0 + 0 + 0 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 =

0.5 + 0.25 + 0.125 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 =

0.966 560 125 350 952 148 437 5(10)

5. Put all the numbers into expression to calculate the single precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =

(-1)1 × (1 + 0.966 560 125 350 952 148 437 5) × 224 =

-1.966 560 125 350 952 148 437 5 × 224 =

-32 993 404

1 - 1001 0111 - 111 1011 1011 1000 0011 1110 converted from 32 bit single precision IEEE 754 binary floating point to base ten decimal system (float) =
-32 993 404(10)

More operations of this kind:

Number 1 - 1001 0111 - 111 1011 1011 1000 0011 1101 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ?

Number 1 - 1001 0111 - 111 1011 1011 1000 0011 1111 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ?


Convert 32 bit single precision IEEE 754 floating point standard binary numbers to base ten decimal system (float)

32 bit single precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (8 bits), mantissa (23 bits)

Latest 32 bit single precision IEEE 754 floating point binary standard numbers converted to decimal base ten (float)

Number 1 - 1001 0111 - 111 1011 1011 1000 0011 1110 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:49 UTC (GMT)
Number 0 - 1000 0011 - 100 0110 0000 0100 0010 0011 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:48 UTC (GMT)
Number 0 - 1000 1111 - 101 1111 0000 1110 0101 0011 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:48 UTC (GMT)
Number 0 - 0111 1100 - 110 1010 0110 1101 0110 1001 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:47 UTC (GMT)
Number 1 - 0000 1010 - 110 0100 0110 0000 0000 0100 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:47 UTC (GMT)
Number 0 - 1000 0100 - 100 1010 1101 1000 0000 0000 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:46 UTC (GMT)
Number 1 - 0111 0100 - 011 1001 0000 0000 0001 0010 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:46 UTC (GMT)
Number 1 - 1110 0111 - 000 0000 0000 0000 0001 0100 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:46 UTC (GMT)
Number 1 - 1001 0011 - 001 0110 1011 0100 1110 0001 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:45 UTC (GMT)
Number 1 - 1000 1110 - 100 0111 0011 1000 1011 1000 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:45 UTC (GMT)
Number 1 - 1000 1111 - 111 0010 1110 1011 1010 1000 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:44 UTC (GMT)
Number 1 - 1110 0000 - 100 1101 1100 0111 1110 1101 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:43 UTC (GMT)
Number 1 - 1000 0000 - 001 0111 0111 0111 0110 1110 converted from 32 bit single precision IEEE 754 binary floating point to decimal number (float) in decimal system (in base 10) = ? May 26 00:41 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert numbers from 32 bit single precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 32 bit single precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the three elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 8 bits contain the exponent.
    The last 23 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(8 - 1) - 1 = 127, that is due to the 8 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the single precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 from 32 bit single precision IEEE 754 binary floating point system to base 10 decimal system (float):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 8 bits contain the exponent: 1000 0001
    The last 23 bits contain the mantissa: 100 0001 0000 0010 0000 0000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

    1000 0001(2) =

    1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =

    128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =

    128 + 1 =

    129(10)

  • 3. Adjust the exponent, subtract the excess bits, 2(8 - 1) - 1 = 127, that is due to the 8 bit excess/bias notation:
    Exponent adjusted = 129 - 127 = 2
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

    100 0001 0000 0010 0000 0000(2) =

    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =

    0.5 + 0 + 0 + 0 + 0 + 0 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =

    0.5 + 0.007 812 5 + 0.000 061 035 156 25 =

    0.507 873 535 156 25(10)

  • 5. Put all the numbers into expression to calculate the single precision floating point decimal value:

    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =

    (-1)1 × (1 + 0.507 873 535 156 25) × 22 =

    -1.507 873 535 156 25 × 22 =

    -6.031 494 140 625

  • 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 converted from 32 bit single precision IEEE 754 binary floating point representation to decimal number (float) in decimal system (in base 10) = -6.031 494 140 625(10)

References

Top Articles
Latest Posts
Article information

Author: Golda Nolan II

Last Updated: 05/07/2023

Views: 6566

Rating: 4.8 / 5 (78 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.